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Abstract. A self-consistent energy functional perturbation theory is developed to evaluate 
the linear response of an electron gas in a cylindrical quantum well (caw) and in a quantum 
well wire (QWW) to an external perturbation with arbitrary space and time dependence. 
Collective modes of the system are determined from the poles of the appropriate response 
function. Intersubband excitations with angular quantum numbers as well as intrasubband 
modes are investigated. In particular, we predict a new kind of excitation mode, referred 
to as the perimeter-like magnetoplasmon. 

1. Introduction 

A self-consistent energy functional perturbation theory has been widely used to study 
two-dimensional ( Z D )  electron systems [ 11. Experiments and theories have shown that 
the lower dimensionality often modifies the properties of an electron gas in three- 
dimensional space dramatically. Experimentally, new unexpected phenomena have 
been observed. Plasmons of a Z D  electron gas are a case in point. The discrete plasmon 
spectrum of layered films has been investigated theoretically [2] and also observed by 
inelastic light scattering experiments [ 31. The edge magnetoplasmon with angular 
quantum numbers for a Z D  electron gas confined to a disc geometry was predicted 
theoretically after the edge plasmon for a Z D  electron gas trapped on a surface of liquid 
He was observed [4,5]. On the other hand, stimulated by the interest in the physics 
and technological applications of two-dimensional quantum well semiconductor struc- 
tures, researchers are now beginning to fabricate and investigate quasi-one-dimensional 
semiconductor structures. In  particular, quantum well wires (QWW) of GaAs 
surrounded by Ga,-,AI,As with dimensions as small as 20 nm x 10 nm in cross section 
have been made by Petroff et a1 [6]. The bound state and the energy spectrum of a 
hydrogenic donor in QWW have been discussed [7]. The result of calculations shows 
that, as the wire size increases an abrupt crossover from three-dimensional to one- 
dimensional behaviour occurs. Collective modes in a superlattice made by QWW arrays 
have also been studied [8,9]. Recently, a model of a quasi-ZD electron gas in the 
cylindrical quantum well (caw) was suggested [lo]. In the model of CQW, undoped 
Ga,_,Al,As with a circular cross section is surrounded by GaAs and then undoped 
Ga,-,Al,As. The outside of such a structure is coated by Si-doped Ga,-,Al,As. 
Finally, an undoped AlGaAs cladding layer is used to contain them so that a cylindrical 
quantum well (CQW) is formed. Such a CQW structure would be an exciting system to 
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study because the effective dimensionality of the CQW could be changed by varying 
the radius of the core (o r  undoped Ga,-,AI,As in the inside of the CQW). The model 
of the CQW shows the transition behaviour between one and  two dimensionality, just 
as a layered 2~ electron gas which is considered as intermediate between the two- and  
three-dimensional configurations. For very small radius, the electron gas behaves as 
a quasi-one-dimensional electron gas; for a very large radius, the electron gas in the 
CQW behaves as ZD electron gas. For an  intermediate radius, the electron gas in the 
CQW has very interesting properties with some remarkable features. 

Now we will present a unified picture of the collective modes of an  electron gas 
in CQW and QWW. The electron gas in CQW is confined in the cylindrical potential 
well, with inside radius a, and outside radius a2 ( a 2 >  a,) ,  and the electrons are free 
to move in the well. For the model of QWW, the electrons are trapped in a cylindrical 
quantum well with radius a 2 .  In  fact, the QWW model is a special case of the model 

The paper is organised as follows. In 0 2, we develop the linear response of the 
system to an  external perturbation. In § 3, we examine the collective excitations, 
including the intrasubband and interssubband modes in the absence of an external 
magnetic field. A new kind of perimeter magnetoplasmon predicted will be described 
in 0 4. Conclusions are given in 0 5. 

Of CQW. 

2. The linear response theory 

We begin with the effective-mass Hamiltonian describing an  electron in the presence 
of the effective potential of the space-charge layer, 

H = - ( h 2 / 2 ~ ) [ a 2 / a z 2 + a 2 / a r 2 + ( 1 / r ) a / a r + ( I / r 2 ) a 2 / a c p 2 ]  

- ( iehB0/2p * c)a/acp + (e2&/ 8~ *c') r2  + V,, (r) .  (1) 

Here (r, cp, z)  are cylindrical coordinates and  the external magnetic field Bo is along 
the z-axis direction. The electronic wavefunctions are given by 

Iv)= In, m, k)=exp(ikz+imcp)5,,,(r) (2) 
where [ , , , ( r )  is the eigenfunction for motion in the effective potential Veff(r) of a 
cylindrical quantum well, m ( = O ,  *l, *2,. . . , *mo)  is the angular quantum number 
and  k is the wave vector along the z direction. The eigenvalues are 

(3) 
where &,,,(Bo) is the energy at the bottom of the nth subband with angular quantum 
number m. 

= &",,(BO) + ( h 2 k 2 / 2 p )  

An external perturbating potential of the form 

QeXt(r, z, t )  = Qextiq, Am, r )  exp(iwr-iqz+iAmcp) (4) 
will induce a perturbed electron density, which in turn induces perturbed Hartree and 
exchange-correlation potentials. The total perturbation 

( 5 )  @ = @H + @ X C  

is also of the form (4). 
We now introduce a single-particle density matrix defined as 

Po = c fa I Q  )( a I (6) 
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where a = ( n ,  m, k )  is a composite index defining the non-interacting single-particle 
state, andf, is the occupation factor. In the presence of an external perturbing potential 

the density matrix will be modified to 

P =Po+ P’. ( 7 )  

The perturbation p’ is to be determined from the equation of motion for the density 
matrix. Following the Ehrenreich-Cohen self-consistent-field prescription [ 111, the 
linear response approximation leads to 

~ ~ l P ’ l ~ ’ ~ = I E f o ~ ~ Y ~ ~ - f O ~ ~ Y ~ I I ~ ~ Y ~ - ~ Y -  f i 4 } ( 4 H , I v ’ )  (8) 

H , = - e @ ( q , A m ,  r )  exp[i(wt-qz+Amcp)]. ( 9 )  

where 

The induced electron density is given by 

Gn(x, t )  =Tr’[p’G(x-x’)] 

= I[fo( E -fn( E , )  I /  ( E - E ,  - f iw ( v /  Hi I v’)( ~ ’ 1 8  ( X  - XO 1 v). (10) 
Y ’ V  

Assuming no overlap between electrons in different subbands, we have 
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(14b) 
Here E ~ , ~ , , , ~  = ~ , , ~ ~ + ( h ' k ' / 2 p * )  and the conditionf,(e,)l.,,=O has been used in the 
electron quantum limit. In particular, for the absence of an external magnetic field, 

tion at zero temperature gives the real part of the irreducible polarisation insertion: 

J n o , m - A m , n , m ( q r  * U)= ( 1 / 2 7 )  dkfA(E",m,k) I [ ( E O . m - A m - E n , m )  + ( ~ k + y  - ~ k )  + hw1-I 

+ [ ( &O.m - A m  - &n,ni ) + ( &k + q  - &k - hw I-'}. 

we can take In, m )  = In, - m )  and 

Re nO,m-Am,n,m(q, * w )  = (p*/27rh2q) I n / (w ' -w !? ) / (w ' -w :? ) I  

- - E , , - ~ , , - ~ ~ ,  . Thus a straightforward calcula- 

(15a)  

= (hq/~* )1 [ (2 / * * /h ' ) (E f -E , ,m)11~ ' *~q  + ( P * /  fi2q)(Eo,m-Am - E n , m ) I I  

and  

Re I I : ,m-Am;O,m(q, w )  = ( p * / 2 n h 2 q )  I n l (w ' -wL2) / (w2-w : '  ) I  (15b) 

0: = ( h q / l * . * ) 1 [ ( 2 ~ * / h 2 ) ( & f - E n , m ) I 1 ' Z * ~ q + ( ~ * / ~ ' q ) ( E n , m - ~ m - & O , m ! I l .  

It is easy to verify that when we take Am = 0 for the intrasubband modes (or n = 0), 
equations (15a)  and (156) reduce as follows: 

R e x "  = ( p * / n h ' q )  Inl(w'-w!)/(w'-w:)i (16) 

w* = (fiq/p*)/kf*tql 

where kf denotes the Fermi wave vector. Equation (16) is exactly the result for the 
one-dimensional electron gas [ 121. 

The perturbed Hartree potential can be obtained from Poisson's equation: 

{d2/lar2+ ( l / r ) a / a r  -[(Am'/?) + q2]}QH = (4ne /&,)Sn(q ,  Am, w ,  r )  (17) 
where E, is the dielectric constant of the background. The solution, QH, is given by 

(18) QH(q ,  Am, r )  = - ( e /&, )  GAnl( r ,  r')Sn(q, Am, w, r ' ) r ' d r '  I 
where 

GAm(r9 r ' )  = 4rKAm(qr)JAn1(qr') 

G A m  (I, r ') = 4nJAm(qr)KAm(qr') 

r ' s  r 

r ' z  r. 

Here K , ( x )  and Z,(x) are mth-order modified Bessel functions. For simplicity, we 
introduce the following representations: 

11) = 10, m - Am) 12) = Io, m )  
Substituting (14) into (181, the matrix elements of Q H  are 

(31[-eQH(q, Am, r)I12) 

13) = In, m - A m )  14) = In, m).  

= 2 [ ~ ? , m ~ - A m , ~ , m ~ ( q ,  ~ ) A ~ , ~ . ~ , , ' , ( q ) ( 3 ' / - e Q ( q ,  Am, r)12') 
n ' m '  
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(19b) 
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3. Intrasubband and intersubband modes 

In this section, we discuss the excitation modes in the absence of the static magnetic 
field. The condition for the collective modes of the system is that self-sustaining 
oscillations in the electron density occur. This means that Qext  = 0, while @ # 0. If the 
n = 0 and  n = 1 subbands are included, a set of equations ( 2 4 a )  and (246)  determinin 
the dispersion relation of collective modes becomes 

c ,  (z [ M , , . d q ,  u)(3'l@(q, Am, rl12')- N32,1,4,(q, wKl ' I@(q,  Am, r)14')1 
n m  

For intrasubband excitations, only the n = n' = 0 element contributes. In this case, 
following Das Sarma and  Madhukar [13], we consider the approximation where the 
electron density profile in the radial direction is a S function, r)12 = S( r - a ) /  r, 
where a ,  < a < a,. The non-interacting single-particle energy for the electron with 
effectiveness mass p* in CQW can be written as 

&n,m = E ,  + ( f i 2 / 2 p * ) ( m ' / a 2 )  m =0,  * I ,  1 2 , .  . . , i m ' .  (27) 

In this case, 11) = 13), 12) = 14) and 11:4 = n&. Therefore after some algebraic manipula- 
tion, equations ( 2 6 a )  and  (26b)  reduce as follows: 

1 - ~ t , o ( q , A m ,  w ) [ A ( q , A m ) - B ( q , A m ) l = O  (28) 

where the real and imaginary parts of the polarisability at absolute zero temperature 
become, respectively, 

(29)  

A m  = 0,  1 1 , .  . . , *mo 

Re xo.o(q, Am, w )  = ( p * / r r h 2 q )  Inl(w' - w ! ) / ( w 2  - w t ) i  

- H [ - ! k f N (  m + p * w / (  hq)l+ k,( m )I> 
Imxo.o(q,  Am, w ) =  - ( p * l h ' q )  { H [ - l k , N ( m ) - p * * w / ( h q ) l + k ; ( m ) l  

(30) 
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where 
k: = (k;- m 2 / a 2 ) ’ l 2  

N (  m )  = q/ (2kf )  + mAm/(qk,-a2) + Am’/(2qkfa2) 
w,  = ( f iq /p*) / (k : -  m’/a’)”’*[~q+ mAm/(qa2)+Am2/(2qa2)3 / .  

mo = [ kfa]  

Here [k,-a] denote integral parts of kfa.  It is worthwhile mentioning that for a given 
electron gas density no the maximum angular quantum number m0 is directly related 
to the radius because the ranges for integral and summation to (14) are determined 
by the Fermi energy E,-. kr is the Fermi wave vector which is determined by 

n o =  ( l/.ir2a2) {kfa + 2[(kfa)’- 11”’ +. . . + 2[( k , -~ ) ’ -  [ k f ~ ] ’ ] ” ~ } .  (31) 
Obviously the maximum angular quantum number m” is related to radius a. For 
example, for no = IO1* cm-2, if we take radius a = 100 A then mo = 2; if a = 1000 8, 
then m0 = 25. When the radius U < ro = 31 A, for the system with an  electron gas density 
no = lo1* cm-*, the system reduces to the one-dimensional electron gas. Therefore, we 
refer to ro as the critical radius. In general, the relation between the critical radius ro 
and the electron gas density n is described by ro=  l / ~ n ; / ~ .  

The dependence of the plasmon frequency w on the wave vector q and angular 
quantum number m is found from (28) and  (29). Choosing parameters of sample 
a = 100 A, no= 10l2 cm-’, effective mass p* = 0.067m, and dielectric constant e = 12.5, 
we find that equation (38) reduces to an equation of fifth power in U ‘ .  For a given 
value of Am there are three frequency intervals w -  < w < w+ where single-particle 
excitations may occur. This means that the single-particle continuum is split into three 
discrete continua within the region of small wave vector q. The collective excitations 
only exist outside the frequency intervals; in other words, there are three dispersion 
spectra of plasmons lying above w, for small wave vector q. All of them correspond 
to a given angular quantum number Am. Because of the absence of magnetic field, 
the symmetry with respect to the rotated axis causes two-fold degeneracy for Am = *1 
and *2, respectively. 

The intersubband modes for the n = 0 and n = 1 subbands can be obtained from 
(26). In addition to the intrasubband modes, a set of equations for intersubband modes 
is given by 

[-N,4,,8,.(3‘1-e@’/2’)+ M14.1 4,(l’~-e@~4’)] = 0 (33) 
m’ 

where 13) = 11, m -Am),  14) = 11, m )  and Am = 0, *l, . . . , *m”. Equations (32) and (33) 
are available for both the QWW and CQW systems, the difference between them lying 
in the choice of the different eigenfunctions (n,m(r) and  eigenvalues e,,,(k) which 
affect M,,,,.,.(q, w )  and N4-ab-P,c,’,’. If we take m 0 = 2  as in the previous analysis, 
there are also three discrete plasmon spectrum branches regardless of whether the 
QWW or  CQW system is used in the absence of an  external magnetic field. The numerical 
solution has not been examined, but it presents no fundamental difficulty. 

4. Discrete perimeter magnetoplasmon 

Now we consider a static external magnetic field B oriented along the z direction 
parallel to the electron-gas layer in CQW. Obviously, the magnetic field does not affect 
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the motion of the electrons in the z direction, but there are significant influences on 
the circular and  radial motions so that the problem becomes rather complicated. For 
simplicity, we take n = n ‘ =  0, i.e. intrasubband modes. In the case of E ~ , - ~ , , - ~ ~ )  # 
E ~ , ~ - ~ ~  and 10, m )  # 10, - m ) ,  equation (14 )  is rewritten as 

6 n ( q ,  Am, w, r)=C[nC,m-Am,”.m(q, w )  
m 

x(0, ml-e@(q,  Am, r)10, m - A m ) 5 0 , m ( r ) 5 0 , m - A m ( r )  

* + n 0.  - m .(I. - m - ~ m  ) ( 4, w 

~ ( 0 ,  - ( m  - A m ) l - e W q ,  ~ m ,   IO, - m ) ~ O , - ~ m - A , ~ ) ( r ) ~ ~ , , - m ( r ) I  (34)  

where 

+ (Ektq - E k )  + ho]. 
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where L, = ( c h / e B , ) ” ’  is the Landau radius, H ( x )  is the step function, 

k,( m )  = [ k f  - ( m /  a + a/2Lf)*]”?  

m: = [kfa - a 2 / 2 ~ f ]  

N ( m )  = q/(2k,) + ( m  + a’/2Lf)Am/(qkfa2)  +Am2/(2qkfa2) .  

Comparing (37) and (38) with (28) and (291, we find that the difference between the 
presence and  the absence of the external magnetic field lies in w ,  and the region of 
summation about m. Now m is replaced by m + a2/2Lf  and the region of summation 
is from -[k,a + a2/2Lf]  to [ k f a  - a2/2Lf]  in the case of the presence of a static magnetic 
field. The dependence of the plasmon frequency w on wave vector q and angular 
quantum number Am is found from (37)  and (38). It is notable that (37)  and (38)  are 
invariant under the separate transformations m and Am to -m and -Am, Bo to -Bo ,  
so that the basic dynamical equations d o  not distinguish right and left helicity. However, 
a definite magnetic field will split the normal modes; for example, for given parameters 
as before, three branches of the spectrum become six plasmon lines. Moreover, there 
may be a possibility that the magnetic field can excite a new magnetoplasmon without 
Landau damping. In particular, the magnetic field dependence of frequencies for the 
mode with angular quantum number Am = f 1 will be interesting. When the magnetic 
flux closed by a cylindrical surface is just an  integral multiple, a2/2Lf  becomes an 
integral number so that (37)  and (38) happen to be of the same form as the equations 
for the absence of an  external magnetic field. It seems to be understood that electronic 
collective modes can not feel the quantised magnetic field, as well as the ‘extended’ 
state of the electrons in the quantum Hall effect. The frequency of collective excitations 
is dramatically varied with increasing magnetic field Bo,  and all electronic excitation 
modes of this system are periodic with respect to an external magnetic field in contrast 
to the bulk resonance modes of ZDEG whose squared frequency increases linearly with 
the squared cyclotron frequency. This remarkable feature is also different from that 
of the edge plasmon found in experiments on an  electron gas trapped on the surface 
of liquid He  [4 ,5] .  The modes are new and reasonable magnetoplasmons, and we 
suggest that they be referred to as ‘discrete perimeter modes’. 

m ! = - [ k f a + a Z / 2 L ~ ]  

5. Conclusions 

In this paper we have presented a unified theory of the electronic collective modes in 
a cylindrical quantum well (CQW) and quantum well wire (QWW) including the effects 
of magnetic field. We have found new kinds of quasi-io discrete modes with angular 
quantum numbers: intrasubband plasmons, intersubband modes and  discrete perimeter 
magnetoplasmons. We have shown that the intrasubband modes display the appropriate 
crossover behaviour (from io to ZD) on going from small radius to large radius. The 
anomalous modes, called ‘discrete perimeter plasmons’, would be interesting due to 
their peculiarities. These electronic modes can be detected by light scattering, inelastic- 
electron scattering and infrared-absorption measurements. In our work, we have not 
examined intersubband modes, but we believe that these modes also display the same 
pecularities as intrasubband modes. In particular, calculations of intersubband modes 
in the presence of a static magnetic field will be more complicated; however, some 
new and unexpected modes may appear. We expect that the CQW system could be 
made using molecular-beam epitaxy and  photolithography; this is in the range of 
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several hundred nanometres for the CQW and should not be difficult to fabricate, as 
shown in the experiment of [6]. 
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